matlab解线性方程组的源代码 function x=nagauss2(a,b,flag) % 用途:选列主元Gauss消去法解线性方程组ax=b % 格式:x=nagauss2(a,b,flag) a为系数矩阵,b为右端列向量,flag若为0,则显示中间过程
标签: nagauss function matlab Gauss
上传时间: 2013-12-22
上传用户:exxxds
【问题描述】已知线性方程组AX=B,求解该方程组。参考算法: 消去法:将列向量B加到矩阵A的最后一列,构成增广矩阵AB。对AB进行下列三种初等变换,使原矩阵A的部分的主对角线上的元素均为1,其余元素均为0,则原列向量B的部分即为X的值: 1. 将矩阵的一行乘以一个不为0的数 2. 将矩阵的一行加上另一行的倍数 3. 交换矩阵中两行的位置
上传时间: 2015-06-18
上传用户:stvnash
车牌定位---VC++源代码程序 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一定的适应性,能够保证背景基本被置为0,以突出牌照区域。 4.削弱背景干扰。对图像B做简单的相邻像素灰度值相减,得到新的图像G,即Gi,j=|Pi,j-Pi,j-1|i=0,1,…,439 j=0,1,…,639Gi,0=Pi,0,左边缘直接赋值,不会影响整体效果。 5.用自定义模板进行中值滤波 区域灰度基本被赋值为0。考虑到文字是由许多短竖线组成,而背景噪声有一大部分是孤立噪声,用模板(1,1,1,1,1)T对G进行中值滤波,能够得到除掉了大部分干扰的图像C。 6.牌照搜索:利用水平投影法检测车牌水平位置,利用垂直投影法检测车牌垂直位置。 7.区域裁剪,截取车牌图像。
上传时间: 2013-11-26
上传用户:懒龙1988
1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一定的适应性,能够保证背景基本被置为0,以突出牌照区域。 4.削弱背景干扰。对图像B做简单的相邻像素灰度值相减,得到新的图像G,即Gi,j=|Pi,j-Pi,j-1|i=0,1,…,439 j=0,1,…,639Gi,0=Pi,0,左边缘直接赋值,不会影响整体效果。 5.用自定义模板进行中值滤波 区域灰度基本被赋值为0。考虑到文字是由许多短竖线组成,而背景噪声有一大部分是孤立噪声,用模板(1,1,1,1,1)T对G进行中值滤波,能够得到除掉了大部分干扰的图像C。 6.牌照搜索:利用水平投影法检测车牌水平位置,利用垂直投影法检测车牌垂直位置。 7.区域裁剪,截取车牌图像。
上传时间: 2014-01-08
上传用户:songrui
// 带有列主元的高斯消元法 // 功能: 求解线性方程组 Ax = b // 参数: A - 指向n*n系数矩阵的指针 // b - 常数向量的指针 // n - 方程组的维数 // 返回值:0 - 如果成功。线性方程组的解保存在 b 中 // 1 - 求解失败
上传时间: 2013-12-18
上传用户:xcy122677
用全选主元高斯消去法求解N复系数阶线性方程组AX=B
上传时间: 2015-11-25
上传用户:ggwz258
实现N阶线性方程组Ax=b逐次超松弛迭代法的通用程序
上传时间: 2014-06-08
上传用户:冇尾飞铊
用于求解大型稀疏线性方程组Ax=b的数值计算库.
上传时间: 2014-01-04
上传用户:稀世之宝039
算法实验名称: 解线性方程组的超松弛迭代法的c程序 功能说明: 本实验主要写出了解线性方程组Ax=b的超松弛迭代法的C程序代码,并举例进行了运算.
上传时间: 2017-02-04
上传用户:aa17807091
求解大规模非对称线性方程组AX=b的迭代方法
上传时间: 2017-02-12
上传用户:xiaohuanhuan